

Assignment #1

Date Due: February 25, 2026

Total: 100 marks

We have the following languages:

L_1 = {the set of all strings over the alphabet {0, 1, 2} that begin with 1101},
 L_2 = {the set of all strings over the alphabet {0, 1, 2} that end with 1011},
 L_3 = {the set of all strings over the alphabet {0, 1, 2} with 101 being a subword},
 L_4 = {the set of all strings over the alphabet {0, 1, 2} with an odd number of 2's},
 L_5 = {the set of all strings over the alphabet {0, 1, 2} with an even number of 2's},
 L_6 = {the set of all strings over the alphabet {0, 1, 2} having the forth symbol from the right end a 1},
 L_7 = {the set of all strings over the alphabet {0, 1, 2} beginning with 1022},
 L_8 = {the set of all strings over the alphabet {0, 1, 2} ending in 1022},
 L_9 = {the set of all strings over the alphabet {0, 1, 2} with the number of 1's multiple of 6},
 L_{10} = {the set of all strings over the alphabet {0, 1, 2} with the number of 1's multiple of 7},
 L_{11} = {the set of all strings over the alphabet {a, b} with the number of a's multiple of 5},
 L_{12} = {the set of all strings over the alphabet {a, b} with the number of b's multiple of 6},
 L_{13} = {the set of all strings over the alphabet {0, 1, 2} consisting only of alternating groups of 21 and 11
(21 and 11 *alternates* at least once)},
and the following homomorphisms

$h : \{a, b\} \rightarrow \{0, 1, 2\}^*$, $h(a) = 10$, $h(b) = 21$;
 $g : \{0, 1, 2\} \rightarrow \{a, b\}^*$, $g(0) = aa$, $g(1) = b$,
 $g(2) = \varepsilon$; and $f : \{a, b, c\} \rightarrow \{0, 1, 2\}^*$, $f(a) = 10$, $f(b) = 11$;

1. (maximum 25 marks) Compute the languages (5 marks each)

- (a) $L_{20} = L_1 \cap L_2$.
- (b) $L_{21} = 1011\Sigma^* \cap \Sigma^*1101$
- (c) $L_{22} = L_{13}$
- (d) $L_{23} = L_6$
- (e) $L_{24} = L_7 \cap L_8$
- (f) $L_{25} = L_{11} \setminus L_{12}$
- (g) $L_{26} = h^{-1}(L_4)$
- (h) $L_{27} = f^{-1}(L_1^R) \cap h^{-1}(L_5)$
- (i) $L_{28} = g(L_1^R)$

2. (maximum 55 marks, 10 marks each) For each of the following languages give a DFA accepting it over the alphabet {0, 1, 2} or {a, b, c}, depending on the alphabet of the language.

- (a) L_{20}
 (b) L_{21}
 (c) L_{22}
 (d) L_{23}
 (e) L_{24}
 (f) L_{25}
 (g) L_{26}
 (h) L_{28}
3. (20 marks) Give DFA's accepting the following languages over the alphabet $\Sigma = \{0, 1, 2, 3, 5\}$:
- (a) the set of all strings beginning with a **1, 2 or 3**, that, when the string is interpreted as an integer **in base 7, is a multiple of 6 plus 1**. For example:
- strings 10,25,100,115,133,313,1015,1105,3013 and 200005 are in the language;
 - the strings 3,4, 21,02,04,23,50,113,135,3005,200001,3011,1103 and 035 are not.
- (b) The set of all strings that ends with an **1, 2, or 3** and when the string is interpreted **in reverse** as an integer **in base 7, is a multiple of 6 plus 1**.
- Examples of strings in the language are 01,52,001,511,331,313,5101,5011,3103 and 500002
 - Examples of strings that are not in the language are: 3,4,12,20,40,32,05,311,531,5003,100002,1103,3011 and 530.
4. (10 marks) Consider the DFA with the following transition table:

	0	1
\rightarrow	0	3
1	2	1
$* 2$	1	2
$* 3$	3	4
4	4	3

Informally describe, as simple as possible, the language accepted by this DFA, and prove that your description is correct. You may use a proof based on induction on the length of an input string.

The maximum is bounded to 115 marks.

Very Important: Verify your solutions using Grail (5 marks for each of exercises 2,3, and 4); describe **how do you think** for each of the above exercises. Just giving the final solution without any explanation may result in a mark of 0 at the discretion of your instructor.

If you decide for a late submission, please, contact me, before the due date, because I will give the solutions to **all** exercises in class.