
UPEI CS2620 Winter 2026 Cezar Câmpeanu 1

Assignment #2
on Prolog

Date Due: February 26, 2026
Total: 100 marks

Include for all programs both rules/code and execution. Don’t use code from the internet.
Write your own code.

Please use only the type of constructions that you see the slides/videos/examples.
Don’t use built-in predicates that will solve the problem for you1; that will defeat the
purpose of the assignment. You are allowed to use the predicates that are present in
the slides (with or without changes).
Don’t use predicates that emulate procedural programming constructions like for
loops(any of them: logical or counter control loops) or conditionals(all kind). Use
just the BNF syntax present in the slides – no other extensions. You need to think
in Prolog, not in a procedural programming language. By using procedural program-
ming constructions you’ll get 10% of the mark or 0.
The content of the slides is enough to complete the assignment. You must send the
code(text) together with instructions of how to run the programs (the Readme file),
and a text capturing the execution (the Run.txt file) (no binary files!)2. Do not use
AI. The use of AI for solving the assignment gives you a 0 for the assignment or the
whole course. Just use the general format required for all assignment submissions,
as it is described in the slides.

1. (24 marks) Write a solution for a function/predicate that computes the following list defined
as:

(a) The result of combining two empty lists is empty list.

(b) Adding an element of the list to the right for the first list, generates lists that are the
result of appending that element to the result of combining the first list with the second
list.

(c) Adding an element of the list to the right for the second list, generates lists that are
the result of appending that element to the result of combining the first list with the
second list.

(d) elements obtained using the above rules should be obtained only once.

1Some versions of Prolog may have that predicates built in
2pictures/screenshots are binary files

2 UPEI CS2620 Winter 2026 Cezar Câmpeanu

|? - combine([a,b,c],[1,2,3],X).

X = [a,b,c,1,2,3] ? ;

X = [a,b,1,c,2,3] ? ;

X = [a,1,b,c,2,3] ? ;

....

X = [1,2,3,a,b,c]

yes

2. (46 marks) Write a predicate to interactively guess if a number has sum property in relation
to a list stored internaly in at most k tries. The number k is read from standard input. After
k is entered, the user must enter a number x and k values i1, i2, ik, 1 ≤ i1, i2, . . . , ik ≤ n.

A number x has sum property with respect to the list [A1, . . . An] if the indexes satisfy this
condition 1 ≤ i1 < i2 < . . . < ik ≤ n and x =

∑
k

i=0
Aik

.

If the number has sum property, the programs ends(user wins), if not, the program displays
the number of tries left and the user tries to guess the number again.

In case the user types a number that is lower than the sum of all numbers in the list this
should be displayed. After each try, the number of remaining tries should be displayed.

If the numbers i1, i2, ik, 1 ≤ i1, i2, . . . , ik ≤ n entered by the user do not have the property
that 1 ≤ i1 < i2 < . . . < ik ≤ n, the program decreses the number of tries by two and the
user must guess again.

Outputs can be obtained with predicates format(’ string’), write(X), and nl, and for
an input we can use the predicate read(X) (integer input will be followed by a “.”). The list
of numbers should be hardcoded (inside the program).

For example:

game .
6 .
You have 6 t r i e s to guess a number with sum property .
60 .
1 .
2 .
3 .
4 .
5 .
6 .
The max sum i s lower .
You have 5 t r i e s to guess a number with sum property .
20 .
1 .
3 .
5 .
7 .
4 .

UPEI CS2620 Winter 2026 Cezar Câmpeanu 3

You have 3 t r i e s to guess a number with sum property .
10 .
1 .
4 .
6 .
You guessed r i gh t .
yes .

3. (40 marks) Write a predicate to interactively mixes two lists (stored internally) into one list
depending on an the value of an integer k is read from standard input. The first k elements
are obtained as follows:

(a) The first element of the list is the maximum of the first element of the first list and the
k-th element of the second list.

(b) The second element of the list is the minimum of the second element of the first list
and the k − 1-th element of the second list.

(c) the rest of the elements are obtained by alternatively applying the previous two rules.

If k is less then the minimum of the lengths of both lists the user must input the number
again.

The next elements are obtained by mixing the rest of the elements, one from the second list
one from the first list, starting with (k + 1)th elements. If one list is longer then the other
one, the missing elements from the shorter list are ignored.

For example:

game .
Number k :
4 .
I n i t i a l l i s t s [1 ,4 ,5 ,7 ,9 , −10 , −3 ,2 ,8 ,9] [7 ,14 ,1 , −7 , −9 ,10 ,3 , −2]
Resu l t [7 ,4 ,5 , −7 ,9 , −9 , −10,10 −3 ,3 , 2 ,−2 ,8 , 9]

game .
Number k :
12
The numer i s to b ig en te r a lower number
11
The numer i s to b ig en te r a lower number
3
I n i t i a l l i s t s [1 1 , 4 , 5 , 7 , 9] [7 ,14 ,1 , −7 , −9 ,10 ,3 , −2]
Resu l t [11 ,4 ,5 ,7 , −7 ,9 , −9 ,10 ,3 , −2]

